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Transient laminar mixed convection in an asymmetrically and differentially heated vertical channel of
finite length subject to an opposing buoyancy is investigated by solving the unsteady two-dimensional
Navier–Stokes and energy equations. Results illustrate the effects of buoyancy strength or Richardson
number Ri ¼ Gr=Re2 and Reynolds number Re on the overall flow structure and the nondimensional heat
flux (Nusselt number) from the heated surface. Final steady or oscillatory flow response is obtained
depending on the value of the Reynolds and Richardson numbers. The critical value of the buoyancy
strength between the two regimes strongly depends on the value of the Reynolds number.
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1. Introduction

Buoyant effects in fluid flow in channels have been studied
extensively due to its practical applications including the design
of compact heat exchangers, solar collectors, nuclear reactors and
the cooling of electronic equipment. The subject of forced and
mixed convection in rectangular ducts with uniform heating condi-
tions has been widely treated in the literature, as can be seen in the
review on this subject by Hartnett and Kostic [1]. The study by
Aung and Worku [2] provided theoretical results for mixed convec-
tion flows between parallel plate channels with unequal wall tem-
peratures and showed that when the parameter Gr/Re exceeds a
certain threshold value, flow reversal occurs. In further studies
for vertically upward flow in a parallel plate channel, the same
authors [3] presented criteria for the occurrence of flow reversal
and showed that buoyancy dramatically increases the hydrody-
namic development length and diminishes the thermal develop-
ment distance. Sparrow et al. [4] performed experiments that
revealed the presence of a pocket of downflow and recirculation
in a buoyancy-driven flow in a heated vertical channel, where
one of the principal walls was maintained at a uniform tempera-
ture above that of the ambient, while the other principal wall
was not heated. Elpidorou et al. [5] reported numerical results
for two-dimensional, steady mixed convection from a flush-
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mounted, isoflux heat source on one side of a vertical channel with
adiabatic walls, reporting the effect of opposite wall boundary con-
ditions in the velocity and temperature fields. The unsteady lami-
nar aiding and opposing mixed convection heat transfer in a
vertical flat duct was numerically investigated for an initially fully
developed flow by Lin et al. [6], obtaining correlation equations for
the time variations of local Nusselt numbers with wall-to-fluid
heat capacity ratios. In [7], Lin et al. numerically investigated the
transient laminar opposing mixed convection in a vertical plane
channel subject to a symmetric heat input, reporting periodic flow
and thermal evolution in space and time along with detailed flow
and thermal characteristics. Yao [8] obtained an analytical solution
for the fluid flow and the heat transfer in the entry region of a
heated vertical channel for constant wall temperature and con-
stant wall heat flux conditions, suggesting that moving periodic
and recirculating cells are generated if natural convection is a dom-
inant mode. Chang and Lin [9] numerically investigated the buoy-
ancy and inertia effects on a low Prandtl fluid flowing through a
symmetrically and uniformly heated vertical plane channel subject
to an opposing buoyancy, pointing out that an oscillatory flow with
a single fundamental frequency is found when the buoyancy
parameter or Richardson number, which is a function of the Rey-
nolds number, exceeds a critical value. The linear stability of mixed
convection in a differentially heated vertical channel for various
Prandtl numbers was studied by Chen and Chung [10], indicating
that the flow can become unstable under appropriate conditions.
In [11], Cheng et al. made numerical predictions of buoyancy as-
sisted flow reversal and convective heat transfer in the entrance re-
gion of a vertical rectangular duct, investigating cases with various
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Nomenclature

2D bidimensional value
f frequency (Hertz)
g magnitude of the gravitational acceleration
Gr Grashof number based on the channel width,

Gr ¼ gbðTw � T0Þh3
=m2

h channel width (characteristic length)
J heat transfer coefficient
L nondimensional length of the channel, L ¼ L1 þ L2 þ L3

L�1 length from the channel inlet to the heated plate (see
Fig. 1)

L1 L1 ¼ L�1=h
L�2 length of the heated plate (see Fig. 1)
L2 L2 ¼ L�2=h
L�3 length from the heated plate to the channel outlet (see

Fig. 1)
L3 L3 ¼ L�3=h
Nu Nusselt number (see Eq. (13))
Nu average Nusselt number (see Eq. (13))
P nondimensional pressure, ðp� p0 � q0gxÞ=q0u2

0
Pe Peclet number, U0h=a
Pr Prandtl number, m=a
q heat flux per unit area on the heated plate
Re Reynolds number based on the channel width,

Re ¼ u0h=m
Ri Richardson number based on the channel width,

Ri ¼ Gr=Re2

St Strouhal number, St ¼ fh=u0

t time
T temperature
T0 fluid temperature at the channel inlet
Tw temperature of the heated plate
U u=u0, longitudinal adimensional velocity

u0 fluid velocity at the channel inlet
u; v longitudinal and transversal velocity components,

respectively
V v=u0, transversal adimensional velocity
x; y; z Cartesian rectangular coordinates
X adimensional longitudinal coordinate, X ¼ x=h
Y adimensional transverse coordinate, Y ¼ y=h
Yp mass flux centroid, defined in Eq. (21)

Greek symbols
a thermal diffusivity
b thermal volumetric expansion coefficient
c heat loss parameter
k coefficient of thermal conductivity
l dynamic viscosity
m kinematic viscosity
q0 density for T ¼ T0
w adimensional stream function
x adimensional vorticity
h adimensional temperature
s adimensional time
n function that generates the mesh in the longitudinal

direction (see Eq. (17))
g function that generates the mesh in the transverse

direction (see Eq. (14))

Subscripts
i; j space coordinates
cr critical value
co cutoff
o atmospheric pressure
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asymmetric heating conditions over wide ranges of parameters,
finding that the strength and the extent of the reversed flow are
dependent on the buoyancy parameter, the cross-sectional aspect
ratio, and the Prandtl number. Evans and Greif [12] studied numer-
ically the downward flow of nitrogen in a tall, partially heated ver-
tical channel, showing the strong effects of buoyancy even for
small temperature differences and reporting time dependant oscil-
lations including periodic flow reversals along the channel walls.
Numerical studies for mixed convection heat transfer and buoy-
ancy-induced flow separations in a duct with complex geometry
were made by Cheng et al. [13]. Jang and Yan [14] made a numer-
ical study of mixed convection heat and mass transfer along a ver-
tical wavy surface that is maintained at uniform temperature by
using a coordinate transformation to transform the complex wavy
surface to a flat plate, presenting developments of skin-friction
coefficient, velocity, temperature, concentration, Nusselt number
and Sherwood number along the wavy surface. El-Din [15] investi-
gated the effect of thermal and mass buoyancy forces on the devel-
opment of laminar mixed convection between two parallel plates
with uniform heat and mass fluxes presenting velocity, tempera-
ture and concentration profiles and how they are affected by the
Richardson number. Martı́nez-Suástegui and Treviño [16] carried
out particle image velocimetry (PIV) measurements in an experi-
mental investigation of laminar mixed convection in a vertical duct
with a square cross section. In their experiments, the main down-
ward water-flow is driven by gravity while a portion of a lateral
side is heated, and buoyancy forces produce non-stationary vortex
structures close to the heated region. In this study, the authors re-
port that the vortex dimensions are independent of the channel
depth. Therefore, although the studied instability in this numerical
investigation is three-dimensional, it is valid to describe the prob-
lem with a two-dimensional model. Their results illustrate the
influence of the Reynolds number and the Richardson number in
the fluid flow structure and vortex sizes and locations, reporting
that the flow patterns are nonsymmetric, periodic, and that they
exhibit increasing complexity and frequency for increasing
buoyancy.

Despite the extensive studies on steady mixed convection in
vertical channels that have been carried out in the past, relatively
little attention has been paid to investigating transient unstable
thermal and flow characteristics in internal mixed convection flow
with a flat velocity distribution at the channel entrance. The aim of
this paper was to conduct a detailed numerical study of unsteady
laminar mixed convection in a vertical plane channel for higher
values of the Richardson number when the flow opposes buoyancy
in order to unravel how the values of the Reynolds and Richardson
numbers affect the overall flow and heat transfer characteristics.
2. Governing equations

Consider a Newtonian, two-dimensional, laminar downflow at
the entrance of a vertical duct with x being the axial coordinate
(positive downward) and y the transverse coordinate (y ¼ 0 at
the left wall). It is assumed that the flow is driven by gravitational
forces acting vertically downward. The forced flow at the inlet sec-
tion of the duct is at ambient temperature T0 and has a uniform
velocity u0 with a flat distribution. On the left wall there is a
discrete heat source of length L�2, located at x ¼ L�1, with uniform
wall temperature Tw, where Tw > T0. All other channel walls are



Fig. 1. Schematic diagram of the flow and heat transfer problem.
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assumed to have heat transfer losses, which are linearly related to
the temperature difference with the ambient temperature. The ef-
fect of viscous dissipation is neglected and the fluid properties are
assumed constant except for the variation of density in the buoy-
ancy term of the longitudinal momentum equation (Boussinesq
approximation). The geometry under investigation is shown in
Fig. 1. It is to be noticed that flow rectifiers are placed at both ends,
channel entrance and exit, thus producing a parallel flow at x ¼ 0
and x ¼ L�1 þ L�2 þ L�3. It is also assumed that as the fluid leaves the
channel, there is no more influence to the flow inside the channel.
This can be obtained by including a short receptacle to collect the
outgoing fluid followed by an open exit to the atmosphere.

The basic equations that govern the two-dimensional flow and
heat transfer, in nondimensional form are given by

oU
oX
þ oV

oY
¼ 0 ð1Þ

oU
os
þ U

oU
oX
þ V

oU
oY
¼ � oP

oX
þ 1
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o2U

oX2 þ
o2U

oY2

 !
þ HðsÞRih ð2Þ
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þ U

oV
oX
þ V

oV
oY
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þ 1
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o2V
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o2V
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ð3Þ

oh
os
þ U

oh
oX
þ V

oh
oY
¼ 1

Pe
o2h

oX2 þ
o2h

oY2

 !
ð4Þ

In the above equations, all velocity components are scaled with the
inflow velocity, u0, U ¼ u=u0 and V ¼ v=u0; the longitudinal coordi-
nates are scaled with the channel width h, X ¼ x=h and Y ¼ y=h;
the time is scaled with the residence time h=u0, s ¼ tu0=h; the
temperature is normalized as h ¼ ðT � T0Þ=ðTw � T0Þ, and the rela-
tive pressure is scaled with the dynamic pressure, q0u2

0, P ¼
ðp� p0 � q0gxÞ=q0u2
0. Re is the Reynolds number, Re ¼ u0h=m, Pr is

the Prandtl number, Pr ¼ m=a, and Pe ¼ PrRe is the Peclet number.
The Richardson number is defined as Ri ¼ Gr=Re2, where Gr is the
Grashof number, Gr ¼ gbðTw � T0Þh3

=m2. Here HðsÞ corresponds to
the Heaviside step function. Eqs. (1)–(4) are to be solved with the
following boundary conditions:

U ¼ V ¼ oP
oY
� 1

Re
o2V

oY2 ¼ 0 at Y ¼ 0;1

P ¼ U � 1 ¼ V ¼ 0; at X ¼ 0
h ¼ 1 at Y ¼ 0; for L1 6 X 6 L1 þ L2

oh
oY
¼ ch at Y ¼ 0; for L1 > X > L1 þ L2

oh
oY
¼ �ch at Y ¼ 1

oh
oX
¼ V ¼ oU

oX
¼ 0 at X ¼ L1 þ L2 þ L3

ð5Þ

Here c corresponds to the heat loss parameter given by c ¼ Jh=k,
where J is the heat loss transfer coefficient and k is the fluid thermal
conductivity. The initial condition for the fluid flow corresponds to
that without buoyancy, U ¼ UpðX;YÞ, which results from a forced
flow along the channel and is obtained from Eqs. (1)–(4) with
Ri ¼ 0. Except for a rapid unimportant transient at the beginning,
this transient problem corresponds to that with a step change in
the temperature at the heated slab from T0 to Tw at time t ¼ 0.

Using the vorticity ðx ¼ oV=oX � oU=oYÞ and stream function
ðU ¼ ow=oY; V ¼ �ow=oXÞ formulation, Eqs. (1)–(4) transform to
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subject to the following nondimensional boundary conditions:

x ¼ ow
oY
� 1 ¼ h ¼ 0; at X ¼ 0

w ¼ ow
oY
¼ xþ o2w

oY2 ¼ 0; at Y ¼ 0;

h ¼ 1; at Y ¼ 0; for L1 6 X 6 L1 þ L2

oh
oY
¼ ch; at Y ¼ 0; for L1 > X > L1 þ L2

ow
oY
¼ w� 1 ¼ xþ o2w

oY2 ¼
oh
oY
þ ch ¼ 0; at Y ¼ 1

ow
oX
¼ oh

oX
¼ o2w

oY2 þ
o2w

oX2 þx ¼ 0; at X ¼ L1 þ L2 þ L3

ð9Þ

Since vorticity is a scalar in a two-dimensional flow, the number of
variables is now reduced to three: w, x and h. The nondimensional
velocity components U, V and the nondimensional pressure P are
calculated as U ¼ ow=oY , V ¼ �ow=oX once the stream function
has been obtained. The resulting Poisson Equation for P is then

o2P

oX2 þ
o2P

oY2 ¼ �2
o2w

oXoY

 !2

þ 2
o2w

oY2

o2w

oX2 � Ri
oh
oX

ð10Þ

to be solved with the boundary conditions

Pð0;YÞ ¼ 0;
oP
oX

����
Y¼�1

¼ 1
Re

o3w

oY3

�����
Y¼�1

þ RihðX;�1Þ ð11Þ

and the corresponding initial conditions. The main goal of the pres-
ent work is to obtain the heat flux from the heated surface, which in
nondimensional form is given by the local Nusselt number
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NuðX; sÞ ¼ qðx; tÞh
ðTw � T0Þk

¼ �oh
oY

����
Y¼0

; for L1 6 X 6 L1 þ L2 ð12Þ

The space averaged Nusselt number is then computed by inte-
grating the local Nusselt number along the plate

NuðsÞ ¼ 1
L2

Z L1þL2

L1

NuðX; sÞdX: ð13Þ

The system of nonlinear equations (6)–(8) along with its boundary
conditions is solved by a numerical method based on finite differ-
ences, to be described in the next section.

3. Numerical solution procedure

Since the flow governed by Eqs. (6)–(8) is known to be elliptic in
space and parabolic in time, iterative procedures must be used and
the solution for the problem can only be obtained marching in
time. The governing equations along with the boundary conditions
are solved numerically by a predictor–corrector method employing
finite-difference techniques. In each time step of the predictor–cor-
rector method, the predictor supplies an initial guess for the next
time-step solution value employing upwind differencing. The cor-
rector method is then used to improve the initial guess using rear-
ward differencing. The iterative procedure is the following. Using
Eq. (7), predicted values for the vorticity x are obtained at a non-
dimensional time sþ 1=2Ds. Employing these values of x, the pre-
dicted values for the stream function w at sþ 1=2Ds are obtained
using now Eq. (6). The next step is to compute the predicted values
of the nondimensional temperature h for sþ 1=2Ds after integra-
tion of Eq. (8). The corrected values of x at sþ Ds are then calcu-
lated using Eq. (7). The final step is to obtain the values of w, and h
for sþ Ds using the respective equations. The above predictor–cor-
rector approach is carried out for all grid points throughout the
channel. In this way, the flow field through the entire channel at
time sþ Ds is calculated. For numerical stability, positive and neg-
ative values of the convective terms in the energy and the vorticity
transport equations are discretized with upwind and rearward dif-
ferencing, respectively, while the buoyancy and diffusion terms are
discretized with a central difference formulation. Computations
were carried out in an Itanium 2 dual mainframe computer with
a 1.6 Ghz processor and a 16 Gb ram memory. All calculations were
performed using water ðPr ¼ 7Þ as the cooling agent, and wall vor-
ticities were evaluated using the classical Thom’s first-order for-
mula [17]

xw ¼
2 wwþ1 � ww

� �
Dn2 ð14Þ

where Dn is the grid space normal to the wall. Higher order evalu-
ations were not used because it is known that they not always lead
to stable solutions [18]. The integration time-step size in this
numerical code was adjusted from stability and accuracy criteria
with the initial time step size given as an input. In order to avoid
numerical errors due to the highly irregular unsteady results, three
time-steps of 0.005, 10�3, and 10�4 were chosen to test the time-
step size sensitivity and convergence of the computations. Results
were compared showing that in order to overcome the difficulty
of numerical instability, the time increment Dt could be set as
10�3 for the flow and heat transfer calculation. This value was cho-
sen because the numerical results for all of the cases studied did not
show any noticeable difference in the value of the average Nusselt
number when smaller values were used.

In order to get better accuracy at lower cost, a strongly non-uni-
form staggered grid system with a denser clustering near the
heated plate was necessary. Using the boundary layer concepts
[19], the computational domain was discretized using coordinate
transformation functions to generate a variable grid size system
that is closely spaced near the walls of the channel and that grad-
ually becomes coarse away from the heated slab. For the transverse
direction a coordinate transformation function gðYÞ has been em-
ployed, obtained from the solution of the following differential
equation:

e2 d2u
ds2 ¼ u�mys ð15Þ

with the boundary conditions uð�1=2Þ ¼ �1=2 and uð1=2Þ ¼ 1=2.
This differential equation is known to have two boundary layers
at s ¼ �1=2 and s ¼ 1=2. Here, e is the resulting boundary layer
thickness and it is assumed to be very small compared with unity,
while mY is the slope outside the boundary layer and is therefore
positive and very small compared with unity. The solution to Eq.
(15) is given by

u ¼ mysþ ð1�myÞ
2

sinhðs=eÞ
sinhð1=2eÞ ð16Þ

Substitution of u by 2g� 1 and s by 2Y � 1, gives the desired func-
tion as

gðYÞ ¼ 1
2
þmy Y � 1

2

� �
þ ð1�myÞ

2
sinh½kyðY � 1=2Þ�

sinh½ky=2� ð17Þ

where ky ¼ 1=e and must be large compared with unity. The chosen
packing parameters of the mesh my and ky, were my ¼ 0:4 and
ky ¼ 10.

For the longitudinal direction, the coordinate transformation
function nðXÞ was found after solving the following differential
equation, known to have a boundary layer at s ¼ 0 (internal bound-
ary layer)

e2

2
d2u
ds2 þ s

du
ds
�mx

� �
¼ 0 ð18Þ

where e is a small number compared with unity that corresponds to
the boundary layer thickness and mx is the slope outside of the
boundary layer. The boundary conditions are uð0Þ ¼ 0 and
uð1=2Þ ¼ 1=2. The solution can be readily obtained as

u ¼ mxsþ 1�mx

2
erfðs=eÞ

erfð1=2eÞ ð19Þ

After substituting u by n� 1=2 and s by X=ðL1 þ L2 þ L3Þ � 1=2, the
function nðXÞ is obtained as

nðXÞ ¼ 1
2
þmx

X
L1 þ L2 þ L3

� 1
2

� �
þ ð1�mxÞ

2

erf kx
X

L1þL2þL3
� 1

2

� �h i
erf½kx=2�

ð20Þ
where kx ¼ 1=e. The chosen values for the packing parameters in the
longitudinal direction were mx ¼ 0:8 and kx ¼ 2. For the solution of
the system of equations, even grid spacing was used in nðXÞ and
gðYÞ, generating the desired mesh in the original coordinates X
and Y.

The following geometrical values were chosen: L1 ¼ L3 ¼
3:5 ðL ¼ 8Þ for Re ¼ 100; L1 ¼ L3 ¼ 4:5 ðL ¼ 10Þ for Re ¼ 300 and
L1 ¼ 6:5; L3 ¼ 4:5 ðL ¼ 12Þ for Re ¼ 500. In all of the cases studied,
the length of the heated slab remained fixed with length L2 ¼ 1.
In order to determine the appropriate grid size, a grid indepen-
dence study was conducted using four different grid sizes of
131� 81;121� 71;111� 61, and 101� 51. It was observed that
a further refinement of grids from 101� 51 to 131� 81 did not
have a significant effect on the results in terms of average Nusselt
number and the maximum value of the stream function. Based on
this observation, a non uniform grid of 101� 51 points has been
employed for a Reynolds number of 300 and 500. Similar grid
dependency studies were carried out for a Reynolds number of
100, and an optimum grid size of 71� 51 was obtained. Fig. 2



Fig. 2. Mesh employed for a Reynolds number of 300 with a grid size of 101� 51
points.
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shows the mesh employed for a Reynolds number of 300 with a to-
tal of 101� 51 grid points.
4. Numerical results

At s ¼ 0, the downflow produces boundary layer flows close to
the surfaces. The space averaged Nusselt number is, using the
boundary layer formulation,

Nu0 ¼
1
L2

ffiffiffiffiffiffi
Re
L1

s
Pr1=3C

L1 þ L2

L1

� �3=4

� 1

" #2=3

with C of order unity. After switching buoyancy on and for relatively
large values of the Richardson number, the flow reverses close to
the heated plate and the Nusselt number Nu first decreases reaching
a minimum and then increases again due to the strong upward flow.
A vortex develops and the heated fluid reaches the maximum posi-
tion, represented by a stagnation point at X ¼ XsðsÞ with the maxi-
mum value of X, where UðXs;YÞP 0 for all Y. It is to be noticed that
this point is not a true stagnation point, because the transverse
velocity component does not vanish at this point. As the heated col-
umn increases, buoyancy forces are larger and the heated fluid
climbs and reaches the final position, which is strongly dependent
on the Reynolds and Richardson numbers. This climbing process
can be smooth or oscillating. Simulations show that when buoyancy
forces are relatively small for a given Reynolds number, the location
of the stagnation point is fixed. These results are in perfect agree-
ment with the values of the buoyancy parameter that dictate
whether the heat transfer regime is steady or oscillatory. As the va-
lue of the Richardson (Grashof) number increases, the stagnation
point shifts from the upper part of the heated plate to higher re-
gions of the channel. By further increasing the value of the buoy-
ancy parameter, the stagnation point shifts to higher regions of
the channel presenting longitudinal oscillations. In general, the val-
ues of the Richardson (Grashof) numbers that dictate the type of
motion displayed by the stagnation point decrease as the Reynolds
number increases. For a given Reynolds number and relatively low
Richardson numbers, the steady-state condition can be reached
after a relatively short transient, of the order of s � 10. As the Rich-
ardson or Grashof number increases for a given Reynolds number,
the heated fluid reaches higher altitudes with a longer transient to-
wards the steady-state. Increasing again the Richardson number
produces small amplitude flow oscillations in the downstream re-
gion of the channel. A further increase of the Richardson number
generates larger oscillations which are felt at the upstream regions
of the channel. The space averaged Nusselt number also oscillates
accordingly.

The numerical results presented in this work correspond in all
cases to adiabatic walls with c ¼ 0, except when explicitly men-
tioned. Fig. 3 shows the starting vortex for a Reynolds number of
100, a Richardson number of 8 and a heat loss parameter c ¼ 0
(adiabatic channel walls). The elapsed time between frames is
Ds ¼ 0:2. The shown images correspond to the zone of the channel
where the heated plate is located and the gravity vector is pointing
down. The first image Fig. 3a shows the initial streamlines (velocity
vectors) and temperature distributions as gray zones. The flow
direction reverses and the flow close to the heated slab rises due
to buoyancy forces as shown in Fig. 3b. A stagnation region appears
above the heated slab. Upward flow is enhanced and the stagnation
region shifts to higher portions of the channel. A clockwise recircu-
lation pattern is created as shown in Fig. 3c. The vortex formation
increases in size and strength. The vortex center is located in the
upper part of the heated plate and Kelvin–Helmoltz instabilities
are displayed by the velocity and temperature fields (Fig. 3d).
The gradual increment in the vortex size interacts with the forced
flow in the central part of the channel. As a result, as shown by
Fig. 3e, the lower part of the vortex formation breaks up and casts
down while a new recirculation pattern is created. The last image
in this figure, Fig. 3f shows the velocity and temperature fields
which resemble the cat eyes in the typical Kelvin–Helmoltz insta-
bility. As the whole column is filled with hot fluid, buoyancy in-
creases and pushes the vortex upwards. For any given value of
the Reynolds number and relatively low values of the Richardson
(Grashof) number, the transient response leads to a steady-state
solution as shown for the streamlines (left) and isotherms (right)
in Fig. 4, for a Reynolds number of 100 and three different values
of the Richardson number. Instead of using the longitudinal coordi-
nate, the hight is employed as 8� Xs. A well-steady rotating clock-
wise vortex structure is formed with increasing size as the
Richardson number increases. As the Richardson number increases,
the single vortex structure changes to a swinging vortex train with
strong transverse oscillations with increasing amplitudes in the
downstream region. Fig. 5 shows the transient streamlines and iso-
therms for the case of Re ¼ 300 and Ri ¼ 5, at three different times.
A two or three vortex structure develops with time coexisting with
small counter clockwise rotating vortices close to the wall. For
these parameters, an oscillatory solution is obtained without any
steady final response. Therefore, in order to follow the migration
of the vortex structure, the value of the stagnation point Xs is plot-
ted as a function of time for three different values of the Reynolds
numbers in Figs. 6–8, as functions of the nondimensional time with
selected values of the Richardson number. For small Reynolds and
Richardson numbers flow (as for example Re ¼ 100 and Ri < 5 in



Fig. 3. Vortex formation for Re ¼ 100 and Ri ¼ 8. The displayed images correspond to the channel section shown with nondimensional time intervals of 0.2.

Fig. 4. Steady streamlines and isotherms for a Reynolds number of 100 for different values of the Richardson number.
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Fig. 6), the vortex formation and migration is smooth, reaching the
final steady-state only after a nondimensional induction time
which increases with the Richardson number. However, for larger
Richardson number flows, the transient process leading to the final
vortex upstream position is not more smooth, but occurs after
some jumps and/or oscillations. This latter behavior can be ob-
served in Fig. 6 for a Re ¼ 100 and Ri ¼ 8, and in Fig. 7 for a
Re ¼ 300 and Ri ¼ 5.



Fig. 5. Transient streamlines and isotherms for a Reynolds number of 300 and a Richardson number of Ri ¼ 5 ðGr ¼ 4:5� 105Þ.

Fig. 6. Location of the stagnation point for a Reynolds number of Re ¼ 100 and
Pr ¼ 7.

Fig. 7. Location of the stagnation point for a Reynolds number of Re ¼ 300 and
Pr ¼ 7.
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Figs. 9–11 show the influence of the buoyancy parameter in the
longitudinal velocity component. The images displayed show typ-
ical instantaneous longitudinal velocity profiles throughout the
whole channel length. In this case, forced flow has an upward
direction and reversed flow has the opposite direction due to the
differential heating which is located at the left side of the instanta-
neous velocity profiles. In Fig. 9–11, the images at the upper left
corner correspond to the initial velocity profile for s ¼ 0, and they
illustrate the influence of the Reynolds number in the flow devel-
opment. The images displayed show that when the buoyancy
parameter increases, flow reversal is enhanced and the maximum
longitudinal velocity value of the forced flow also increases. Fig. 9
shows the instantaneous velocity profiles for a Reynolds number of
100 and three different values of the Richardson (Grashof) number:
Ri ¼ 3 ðGr ¼ 3� 104Þ, 6 ðGr ¼ 6� 104Þ, and 8 ðGr ¼ 8� 104Þ. Fig. 10
shows the instantaneous velocity profiles for a Reynolds number of
300 and three different values of the Richardson (Grashof) num-
bers: Ri ¼ 1 ðGr ¼ 9� 104Þ, 3 ðGr ¼ 2:7� 105Þ, and 5 ðGr ¼ 4:5�
105Þ. Fluctuations in the resultant flow are increased due to the
oscillations presented by the main vortex formation due to an in-
crease in the buoyancy parameter. Fig. 11 shows the instantaneous
velocity profiles for a Reynolds number of 500 and three different
values of the Richardson (Grashof) numbers: Ri ¼ 1 ðGr ¼
2:5� 105Þ, 2 ðGr ¼ 5� 105Þ, and 3 ðGr ¼ 7:5� 105Þ. Figs. 9–11
illustrate how the resulting flow in the channel becomes more sen-
sitive to buoyancy forces as the Reynolds number is increased,
resulting in an enhancement of flow reversion.



Fig. 8. Location of the stagnation point for a Reynolds number of Re ¼ 500 and
Pr ¼ 7:
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In order to represent the transient process and the flow oscilla-
tions in a simple way, a single parameter which characterizes the
flow response Yp is introduced as the first moment of the longitu-
dinal velocity component (mass flux centroid)

YpðX0; sÞ ¼
1
U

Z 1

0
UðX0; Y; sÞY dY ¼

Z 1

0
UðX0;Y ; sÞY dY ð21Þ

where U corresponds to the average velocity in the selected position
X0, U ¼

R 1
0 U dY ¼ 1. To obtain the mass flux centroid, the region

that corresponds to the channel’s midsection was employed first
as the reference region, X0 ¼ L�1 þ 0:5L�2. The time variations of the
mass flux centroid are directly related to the transverse flow oscil-
lations. Figs. 12–15 illustrate the mass flux oscillations as a function
Fig. 9. Velocity profiles for a
of the nondimensional time for three different values of the Rey-
nolds number, 100, 300, and 500, for different ranges of the buoy-
ancy parameter. Fig. 12 shows that for a Reynolds number of 100,
transversal oscillations felt at the channel’s midsection are practi-
cally non-existent for the Richardson numbers plotted of Ri 6 8,
for large nondimensional times. However, in the long transient to-
wards the final steady-state, transversal flow oscillation appeared
for relatively large values of the Richardson numbers, larger than
4. The oscillations for Ri ¼ 8, have a clear nondimensional frequency
or Strouhal number of St ¼ fh=u0 ¼ 0:43. For the highest value of the
buoyancy parameter used in this figure, Ri ¼ 8, the flow reaches the
final steady state condition only after s � 140. For a Reynolds num-
ber of Re ¼ 300, Fig. 13 shows how the transverse oscillations are
considerably more intense in comparison with the previous Rey-
nolds number. For small values of the buoyancy parameter Ri < 4,
ðGr < 5:44� 105Þ, transverse oscillations are small in amplitude
and are quickly damped. For higher values of the buoyancy param-
eter, the amplitude of the transverse oscillations increased dramat-
ically and the final solution seemed to be oscillatory. Fig. 14 shows
the normalized power spectrum of the flow oscillation for a Rich-
ardson number of Ri ¼ 5, showing clearly the peak at the corre-
sponding Strouhal number of St ¼ 0:52. Fig. 15 shows how for a
Reynolds number of Re ¼ 500 and Ri P 2, the mass flux centroid
is located very close to the right wall of the channel. For Ri ¼ 1, a
final steady-state is achieved after a relatively short transient. How-
ever, for Ri P 2, strong flow oscillations occur, with larger ampli-
tude as the Richardson number increases. Fig. 16 shows the
normalized power spectrum for a Ri ¼ 3, showing a couple of
important peaks ranging from 0.1 to 0.5 in the Strouhal numbers.

In order to illustrate the way in which the intensity of the trans-
verse oscillations in the flow vary at the selected position X0, mass
flux centroides were obtained at several positions of the channel.
Figs. 17–19 show how the amplitude of the transverse oscillations
increase in the downstream direction. Fig. 17 shows the mass flow
Reynolds number of 100.



Fig. 10. Velocity profiles for a Reynolds number of 300.

Fig. 11. Velocity profiles for a Reynolds number of 500.
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centroides for a Reynolds number flow of 300, a Richardson num-
ber of 2 and a nondimensional channel length of L ¼ 10, that is for
the parametric set [300, 2, 10]. There is a smooth transition to the
final steady state without any flow oscillation in the whole chan-
nel. The mass flow centroid increases continuously downstream.
Fig. 18 shows the same variable for the parametric set [300, 3.5,



Fig. 12. Location of the mass flux centroid for a Reynolds number of Re ¼ 100 at the
channel’s midsection.

Fig. 13. Location of the mass flux centroid for a Reynolds number of Re ¼ 300 at the
channel’s midsection.

Fig. 14. Strouhal number of the mass flux oscillations for a Reynolds number of 300
and Ri ¼ 5 ðGr ¼ 4:5� 105Þ.

Fig. 15. Location of the mass flux centroid for a Reynolds number of Re ¼ 500 at the
channel’s midsection.

Fig. 16. Strouhal number of the mass flux oscillations for a Reynolds number of 500
and Ri ¼ 3 ðGr ¼ 7:5� 105Þ.

Fig. 17. Mass flux centroid throughout the whole channel length for Re ¼ 300 and
Ri ¼ 2 ðGr ¼ 1:8� 105Þ.
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Fig. 18. Mass flux centroid throughout the whole channel length for Re ¼ 300 and
Ri ¼ 3:5 ðGr ¼ 3:15� 105Þ.

Fig. 19. Mass flux centroid throughout the whole channel length for Re ¼ 300 and
Ri ¼ 5 ðGr ¼ 4:5� 105Þ.

Fig. 20. Averaged Nusselt number in the heated plate for a Reynolds number of
Re ¼ 100 and Pr ¼ 7.

Fig. 21. Averaged Nusselt number in the heated plate for a Reynolds number of
Re ¼ 300 and Pr ¼ 7.
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10]. The flow structure now becomes more homogenous in the
downstream regions of the channel. In this figure, some jumping
processes are evident and small amplitude flow oscillations ap-
peared at the downstream position of the channel. Fig. 19 shows
the mass flux centroides for the parametric set [300, 5, 10]. Here,
strong flow oscillations arise almost in the whole channel, except
in the most upstream position. The amplitude of the flow oscilla-
tions increase dramatically in the downstream region of the chan-
nel. The oscillations are not present in the upper part of the
channel, which corresponds to positions close to the final stagna-
tion point ðX < XsÞ, with Xs ’ 1:7. However, the mass flux centroid
moves to the right in the upper part of the channel ðX0 ¼ 2:5Þ but
without remarkable oscillations, indicating that the produced vor-
tex structure influences the flow almost in the whole channel. The
mean maximum value of the mass flux centroides occurs at the
middle of the channel, X ¼ 5. The resulting flow oscillations seem
to be sustained up to the final nondimensional computing time
of 250, indicating that a Hopf bifurcation takes place.

5. Heat transfer

In this section, results for the temporal variations in the aver-
aged Nusselt number, NuðsÞ are presented. Computation is started
immediately after the sudden imposition of gravity at s ¼ 0, and
simulations were carried out until the averaged Nusselt number
reached steady state or clearly showed a final oscillatory behavior.
Fig. 20 shows the predicted temporal evolution on the averaged
Nusselt number for a Reynolds number of 100 for several values
of the buoyancy parameter. The flow and heat transfer finally
reached the steady-state condition. The transient nondimensional
time needed to reach the final steady-state increases with increas-
ing Richardson (Grashof) numbers. At low opposing buoyancy
Richardson numbers, Ri < 4 ðGr < 4� 104Þ, steady state is reached
at s � 30. As the buoyancy parameter is further increased, the
duration of the transient before reaching steady state also in-
creases, and oscillations appeared in the transient response.
Fig. 20 shows how for a value of the buoyancy parameter of
Ri ¼ 8 ðGr ¼ 8� 104Þ, steady state is reached at s � 150. Fig. 21
shows the averaged Nusselt number for a Reynolds number of
Re ¼ 300 and illustrates how heat transfer is enhanced by increas-
ing the value of the buoyancy parameter. Simulations were carried
out up to s ¼ 250. Results show that with this higher Reynolds
number, a stronger reverse flow appears earlier. This figure illus-
trates how buoyancy forces have become more sensitive with an
increase in the Reynolds number. Oscillation and periodicity is



Fig. 22. Averaged Nusselt number in the heated plate for a Reynolds number of
Re ¼ 500 and Pr ¼ 7.
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exhibited by the averaged Nusselt number for relatively large Rich-
ardson numbers such as Ri ¼ 5. For a Richardson number of Ri ¼ 4,
small imperceptible oscillations arise. However, for a Richardson
number of Ri ¼ 5 the averaged Nusselt number oscillates, with
an almost constant frequency ðSt ¼ 0:52Þ for nondimensional
times larger than s ¼ 150. In Fig. 22, for a Reynolds number of
Re ¼ 500, the values of the Richardson (Grashof) number for steady
and transition to oscillatory heat transfer are further reduced. The
fluctuating flow and thermal response clearly indicate that under
the strong action of the opposing buoyancy, the flow has become
rather unstable. A final steady-state is reached for a Richardson
number of Ri ¼ 1, although the transient is not smooth. For a Rich-
ardson number of Ri ¼ 2, the transient process contains oscillation
Fig. 23. Streamlines and isotherms for differ
windows with decreasing frequency as time increases. The
final nondimensional time used in the computations ðs ¼ 500Þ
does not show that for this Richardson number a final steady
state can be reached. For higher Richardson numbers, an oscilla-
tory averaged Nusselt number is obtained with complex power
spectra.
5.1. Non-adiabatic channel walls

In this section the influence of the wall heat loss parameter c is
presented using a similar flow configuration as previously reported
experimental work [16]. The selected parametric set to be em-
ployed in the numerical simulations is [300, 6.7, 6.3]. Fig. 23 shows
typical streamlines (left) and isotherms (right) for three different
values of the heat loss parameter c. For adiabatic walls and rela-
tively long times, a three vortex structure is formed covering the
whole system and the heated fluid climbs almost to the channel
entrance. The imposed boundary condition in the upper part of
the channel has a strong influence in the response. For c ¼ 10,
the heat losses to the wall produce a decrease in the length of
the vortex structure as shown in the middle pair of Fig. 23. For very
strong wall heat losses ðc ¼ 100Þ, the response now produces a
very short flow vortical structure, with the boundary conditions
corresponding to a wall temperature close to the fluid inlet tem-
perature. Fig. 24 shows the averaged Nusselt numbers for the three
cases considered: c ¼ 0, 10 and 100. Fig. 24a shows the averaged
Nusselt number for the case of adiabatic walls ðc ¼ 0Þ. The flow
and heat transfer from the heated slab shows a multi-spectral re-
sponse. In the inset of Fig. 24a only the steady oscillatory behavior
is plotted for clarity in a limited range of the nondimensional time,
from s ¼ 200 to s ¼ 250. However, as the heat losses through the
channel walls increase, the flow and heat transfer from the heated
slab become more organized and a transition from the multi-spec-
tral to a monospectral behavior is achieved. Fig. 24b shows the case
ent values of the heat loss parameter c.



Fig. 24. Averaged Nusselt number for different values of the heat loss parameter c using the parametric set [300,6.7,6.3].

Fig. 25. Normalized power spectra of the mass flux oscillations, for different values of the heat loss parameter c using the parametric set [300, 6.7, 6.3].
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for c ¼ 10. After a long transition of s � 200, with a flow response
of similar characteristics to the case of adiabatic walls, the flow
achieves a more regular harmonic pattern. Fig. 24c shows the case
of c ¼ 100 (practically corresponding to the case of cold walls), the
response is almost harmonic after the initial short transient of
s � 20. The normalized power spectra for the averaged Nusselt
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number as a function of the Strouhal number are plotted in Fig. 25
for the three cases considered. For adiabatic walls, Fig. 25a
shows the multi-spectral response with several peaks, ranging
from St � 0:1 to St � 0:6. When the wall heat losses increase, only
the peak St � 0:28 survives, as shown in Fig. 25b and c. Fig. 26
shows the mass flux centroid at X0 ¼ L1 as a function of the nondi-
mensional time for the three cases considered. A similar behavior
as with the averaged Nusselt number is obtained, showing a nice
harmonic behavior for large values of parameter c. The experimen-
tal results reported in [16] are also shown in Fig. 27. The reported
frequency in the experimental work seems to have larger values
than the numerical results. The lack of temporal resolution in
[16] may be responsible for the discrepancy. The mean mass
flux centroid decreases as the heat loss parameter increases.
For large values of c, the mass flux centroid has a mean of
YpðX0 ¼ L1Þ ’ 0:65 with an amplitude of 0.03. Finally, the final
upper stagnation point Xs is plotted in Fig. 28 as a function of the
heat loss parameter.
Fig. 26. Mass flux centroid for different values of the heat loss parameter c using
the parametric set [300, 6.7, 6.3].

Fig. 27. Experimental and numerical mass flux centroid.

Fig. 28. Location of the final upper stagnation point for different values of the heat
loss parameter c using the parametric set [300, 6.7, 6.3].

Fig. 29. Final averaged Nusselt number and location of the stagnation point as
functions of the Richardson number for Re ¼ 100 and 300.
6. Conclusion and remarks

A laminar, two-dimensional and opposing mixed convection
flow with a flat velocity distribution at the entrance of a vertical
channel with non-adiabatic walls and a discrete and isothermal
heat source has been studied numerically. The nondimensional
governing equations are solved using a nonuniform spacing in both
directions. A parametric study was carried out to evaluate the
influence of the buoyancy and inertia effects in the temporal evo-
lution of the velocity and temperature fields along with the plate
overall heat transfer. The influence of the Reynolds and Richardson
(Grashof) numbers in the transient formation of the vortical struc-
ture, the vortex location and the vortex dimensions on the heat
transfer are studied. For a given Reynolds number and relatively
small value of the Richardson number, the transient process leads
to a final steady-state. As buoyancy increases, the heated fluid
climbs towards the upper channel entrance, producing a vortical
structure with one or several clockwise rotating vortices and
strong transverse flow oscillations, with increasing amplitudes in
downstream positions. The convection instability occurs as a Hopf
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bifurcation with a well defined frequency close to St ’ 0:52. Final-
ly, Fig. 29 shows the final mean space averaged Nusselt number
and the location of the stagnation point (upper vortex position)
as a function of the Richardson number for Re ¼ 100 and
Re ¼ 300. The Nusselt number first decreases and later increases
with the Richardson number. The Richardson number for the min-
imum averaged Nusselt number decreases with the Reynolds num-
ber. The same seems to occur with the critical value of the
Richardson number for instability. The position of the upper stag-
nation point decreases monotonically with the Richardson number
and gives a similar profile for both Reynolds numbers. However, it
is to be noticed that the channel lengths in both cases are different.
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